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Abstract. For confining potentials of the formq(r) = r + p(r), wherep(r) decays rapidly
and is smooth forr > 0, it is proved thatq(r) can be uniquely recovered from the data
{Ej , sj }∀j=1,2,3.... HereEj are energies of bound states andsj are the valuesu′j (0), whereuj (r)

are the normalized eigenfunctions,
∫∞

0 u2
j dr = 0. An algorithm is given for findingq(r) from

the knowledge of few first data, corresponding to 16 j 6 J assuming that the rest of the data
are the same as forq0(r) := r.

1. Introduction

The problem discussed in this paper is: to what extent does the spectrum of a quarkonium
system together with other experimental data determine the interquark potential? This
problem was discussed in [1], where one can find further references. The method given
in [1] for solving this problem is that one has few scattering dataEj , sj , which will be
defined precisely later, one constructs using the known results of inverse scattering theory
a Bargmann potential with the same scattering data and considers this a solution to the
problem. This approach is wrong because the scattering theory is applicable to the potentials
which tend to zero at infinity, while our confining potentials grow to infinity at infinity and
no Bargmann potential can approximate a confining potential on the whole semi-axis(0,∞).
The aim of this paper is to give an algorithm which is consistent and yields a solution to the
above problem. The algorithm is based on the well known Gelfand–Levitan (GL) procedure
[2–4].

Let us formulate the problem precisely. Consider the Schrödinger equation

−∇2ψj + q(r)ψj = Ejψj in R3 (1.1)

whereq(r) is a real-valued spherically symmetric potential,r := |x|, x ∈ R3,

q(r) = r + p(r) p(r) = o(1) asr →∞. (1.2)

The functionsψj(x), ‖ψj‖L2(R3) = 1, are the bound states,Ej are the energies of these
states. We defineuj (r) := rψj (r), which corresponds to s-waves, and consider the resulting
equation foruj :

Luj := −u′′j + q(r)uj = Ejuj r > 0, uj (0) = 0, ‖uj‖L2(0,∞) = 1. (1.3)

One can measure the energiesEj of the bound states and the quantitiessj = u′j (0)
experimentally.

Therefore the following inverse problem (IP) is of interest:
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IP: given

{Ej , sj }∀j=1,2,... (1.4)

can one recoverp(r)?
In [1] this question was considered but the approach used was inconsistent and no exact

results were obtained. The inconsistency of the approach in [1] is that on the one hand
[1] uses the inverse scattering theory which is applicable only to the potentials decaying
sufficiently rapidly at infinity, on the other hand, [1] is concerned with potentials which
grow to infinity asr →+∞.

It is nevertheless of some interest that numerical results in [1] seem to give some
approximation of the potentials in the neighbourhood of the origin.

Here we present a rigorous approach to the problem considered in [1] and prove the
following theorem.

Theorem 1.IP has at most one solution and the potentialq(r) can be reconstructed from
data (1.4) algorithmically.

The reconstruction algorithm is based on the well known GL procedure for the
reconstruction ofq(x) from the spectral function. We show that the data (1.4) allow one
to write the spectral function of the self-adjoint inL2(0,∞) operatorL defined by the
differential expression (1.3) and the boundary condition (1.3) at zero.

In section 2 proofs are given and the recovery procedure is described.
Since in experiments one has only finitely many data{Ej , sj }16j6J , the question arises:

how does one use these data for the recovery of the potential?
We give the following method: the unknown confining potential is assumed to be of

the form (1.2) and it is assumed that forj > J the data{Ej , sj }j>J for this potential are
the same as for the unperturbed potentialq0(r) = r. In this case an easy algorithm is given
for finding q(r).

This algorithm is described in section 3.

2. Proofs

We prove theorem 1 by reducing IP to the well studied and solved problem of recovery of
q(r) from the spectral function [2, 3].

Let us recall that the self-adjoint operatorL has a discrete spectrum sinceq(r)→+∞.
The formula for the number of eigenvalues (energies of the bound states), not exceedingλ,
is known: ∑

Ej<λ

1 := N(λ) ∼ 1

π

∫
q(r)<λ

[λ− q(r)] 1
2 dr.

This formula yields, under the assumptionq(r) ∼ r as r →∞, the following asymptotics
of the eigenvalues:

Ej ∼
(

3π

2
j

)2
3

asj →+∞.

The spectral functionρ(λ) of the operatorL is defined by the formula

ρ(λ) =
∑
Ej<λ

1

αj
(2.1)
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whereαj are the normalizing constants:

αj :=
∫ ∞

0
φ2
j (r) dr. (2.2)

Hereφj (r) := φ(r, Ej ) andφj (r, E) is the unique solution of the problem:

Lφ := −φ′′ + q(r)φ = Eφ r > 0, φ(0, E) = 0, φ′(0, E) = 1. (2.3)

If E = Ej , thenφj = φ(r, Ej ) ∈ L2(0,∞). The functionφ(r, E) is the unique solution to
the Volterra integral equation:

φ(r, E) = sin(
√
Er)√
E

+
∫ r

0

sin[
√
E(r − y)]√
E

q(y)φ(y,E)dy. (2.4)

For any fixedr the functionφ is an entire function ofE of order 1
2, that is, |φ| <

c exp(c|E|1/2), where c denotes various positive constants. AtE = Ej , whereEj are
the eigenvalues of (1.3), one hasφ(r, Ej ) := φj ∈ L2(0,∞). In fact, if q(r) ∼ cra, a > 0,
then |φj | < c exp(−γ r) for someγ > 0.

Let us relateαj andsj . From (2.3) withE = Ej and from (1.3), it follows that

φj = uj

sj
. (2.5)

Therefore

αj := ‖φj‖2
L2(0,∞) =

1

s2
j

. (2.6)

Thus data (1.4) define uniquely the spectral function of the operatorL by the formula

ρ(λ) :=
∑
Ej<λ

s2
j . (2.7)

Given ρ(λ), one can use the GL method for recovery ofq(r) [2, 3]. According to this
method, define

σ(λ) := ρ(λ)− ρ0(λ) (2.8)

whereρ0(λ) is the spectral function of the unperturbed problem, which in our case is the
problem withq(r) = r, then set

L(x, y) :=
∫ ∞
−∞

φ0(x, λ)φ0(y, λ)dσ(λ) (2.9)

whereφ0(x, λ) are the eigenfunctions of the unperturbed problem (2.3) withq(r) = r, and
solve the second kind Fredholm integral equation for the kernelK(x, y):

K(x, y)+
∫ x

0
K(x, t)L(t, y)dt = −L(x, y) 06 y 6 x. (2.10)

The kernelL(x, y) in equation (2.10) is given by formula (2.9). IfK(x, y) solves (2.10),
then

p(r) = 2
dK(r, r)

dr
r > 0. (2.11)
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3. An algorithm for recovery of a confining potential from few experimental data

Let us describe the algorithm we propose for recovery of the functionq(x) from few
experimental data{Ej , sj }16j6J . Denote by{E0

j , s
0
j }16j6J the data corresponding toq0 := r.

These data are known and the corresponding eigenfunctions (1.3) can be expressed in terms
of Airy function Ai(r), which solves the equationw′′ − rw = 0 and decays at+∞, see [5].
The spectral function of the operatorL0 corresponding toq = q0 := r is

ρ0(λ) :=
∑
E0
j <λ

(s0
j )

2. (3.1)

Define

ρ(λ) := ρ0(λ)+ σ(λ) (3.2)

σ(λ) :=
∑
Ej<λ

s2
j − (s0

j )
2 (3.3)

and

L(x, y) :=
J∑
j=1

ajφj (x)φj (y) (3.4)

where

aj := s2
j − (s0

j )
2 (3.5)

andφj are the eigenfunctions of the unperturbed problem:

−φ′′j + rφj = Ejφj r > 0, φj (0) = 0, φ′j (0) = 1. (3.6)

We denote in this section the eigenfunctions of the unperturbed problem byφj rather than
by φ0j for notational simplicity, since the eigenfunctions of the perturbed problem are
not used in this section. One has:φj (r) = cj Ai(r − Ej), where cj = [Ai ′(−Ej)]−1,
Ej > 0 is thej th positive root if the equation Ai(−E) = 0 and, by formula (2.6), one has
s0
j = [c2

j

∫∞
0 Ai 2(r−Ej) dr]−1/2. These formulae make the calculation ofφj , Ej andsj easy

since the tables of Airy functions are available [5].
The equation analogous to (2.10) is

K(x, y)+
J∑
j=1

ajφj (y)

∫ x

0
K(x, t)φj (t) dt = −

J∑
j=1

ajφj (x)φj (y). (3.7)

Equation (3.7) has degenerate kernel and therefore can be reduced to a linear algebraic
system.

Consider first the simplest caseJ = 1, when (3.7) takes the form

K(x, y)+ a1φ1(y)

∫ x

0
K(x, t)φ1(t) dt = −a1φ1(x)φ1(y). (3.8)

Denote ∫ x

0
K(x, y)φ1(t) dt := b1(x) (3.9)

then multiply (3.8) byφ1(y) and integrate over(0, x) with respect toy. This yields

b1(x)

[
1+ a1

∫ x

0
φ2

1 dy

]
= −a1φ1(x)

∫ x

0
φ2

1 dy. (3.10)



Letter to the Editor L299

Therefore, (3.8)–(3.10) yields:

K(x, y) = −a1φ1(x)φ1(y)+ a2
1φ1(y)

φ1(x)
∫ x

0 φ
2
1 dy

1+ a1
∫ x

0 φ
2
1 dy

(3.11)

provided that

1+ a1

∫ x

0
φ2

1 dy 6= 0 for all x > 0. (3.12)

Condition (3.12) is satisfied, for example, ifa1 > −1. In this case

p(r) = 2
d

dr
K(r, r) q(r) = r + p(r) (3.13)

with K(r, r) defined by (3.11) withx = y = r.
In a similar way one can solve algebraically equation (3.7) with any finiteJ . If J <∞,

then equation (3.7) takes the form

K(x, y)+
J∑
j=1

ajφj (y)bj = −
J∑
j=1

ajφj (x)φj (y) (3.14)

where

bj :=
∫ x

0
K(x, y)φj (t) dt. (3.15)

Multiply (3.14) by φj (y) and integrate over(0, x) with respect toy to obtain

bi +
J∑
j=1

ajbjφij = −
J∑
j=1

ajφj (x)φij φij :=
∫ x

0
φi(y)φj (y) dy. (3.16)

This is a linear algebraic system forbi . The matrix of this system is nonsingular if
aj , 16 j 6 J , are such that

det(δij + ajφij ) 6= 0 ∀x > 0. (3.17)

In this case system (3.16) is uniquely solvable for allx > 0, andp(r) can be calculated by
formula (3.13) with

K(r, r) = −
J∑
j=1

ajφ
2
j (r)−

J∑
j=1

ajφj (r)bj (r) (3.18)

andbj := bj (r), 16 j 6 J , are defined by the system (3.16) withx = r.

The author thanks L Weaver who pointed out paper [1] and discussed the results of this
paper.
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